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You know ...

e ... Software requirements
* ... Software design
* ... Software coding
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Outline

e Software Testing?
* Why Test?
* What Do We Do When We Test ?

— Understand basic techniques for software
verification and validation

— Analyze basics of software testing techniques
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The Term Bug

- Bugis used informally
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Some “Bug detection” Techniques
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 Formal methods :proving software correct

e Testing: executing program in a controlled
environment (input) and “validating” output
(IEEE definition).

:> Why Test?
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Northeast Blackout of 2003

508 generating
units and 256
power plants shut
\_ down J

-~

e N
Affected 10 million
people in Ontario,

\ Canada )
s N
Affected 40 million
people in 8 US
N states )

~

Financial losses of
$6 Billion USD

J

N O

The alarm system in the energy management system failed due
to a software error and operators were not informed of the power
N overload in the system
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Costly Software Failures !

« NIST report, “The Economic Impacts of Inadequate
Infrastructure for Software Testing” (2002)

> Inadequate software testing costs the US alone between
$22 and $59 billion annually

« Huge losses due to web application failures
» Financial services : $6.5 million per hour (just in USA!)

» Credit card sales applications : $2.4 million per hour (in
USA)
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Discussion ...

 Have you heard of other software bugs?
— In the media?
— From personal experience?

* Does this embarrass you as a future software
engineer?
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Cost of Not Testing

Poor Program Managers might say:

"Testing is too expensive.”

* Testing is the most time consuming and
expensive part of software development

* Not testing is even more expensive

* If we do not have enough testing effort early,
the cost of testing increases

11
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Cost of Not Testing

11
WE CAN ONLY IF WE DONT FIX | I
AFFORD TO FIX THE 100% OF THE BUGS, S0 OUR
HIGH-PRIORITY THE SOFTWARE WILL PLAN IS
BUGS. BE 100% USELESS. TO FAIL?
MORE
SLOLJLY.

www.dilbert.com scottadams®acl.com

E A

b 2209 02009 Scott Adams, Inc./Dist. by UFS, Inc.




MSISSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Testing Goals

* The Major Objectives of Software Testing:
- Detect errors (or bugs) as much as possible in a given
timeline.

- Demonstrate a given software product matching its
requirement specifications.

- Validate the quality of a software testing using the
minimum cost and efforts.

* Testing can NOT prove product works 100%- -
- even though we use testing to demonstrate
that parts of the software works

12
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Testing Overview

 Who tests
— Programmers

— Testers/Req. Analyst

— Users - How (test cases designed)
e What is tested _ Intuition
— Unit Code testing — Specification based (black
— Functional Code testing box)
— Integration/system — Code based (white-box)
testing

— User interface testing
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Exhaustive Testing is Hard

* Number of possible test cases
(assuming 32 bit integers)

int max(int x, int vy) _ 232y 32— 964
{ :
if (x> y) * Do bigger test sets help?
return x; — Test set {(x=3,y=2), (x=2,y=3)}
else .
will detect the error

return Xx;
} — Test set
{(x=3,y=2),(x=4,y=3),(x=5,y=1)} will
18446744073709551616 possibilites ~ NOt detect the error although it has
more test cases

* |tis not the number of test cases

 But,if T,oT,, then T, will detect every
fault detected by T,
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Exhaustive Testing is Hard

* Assume that the input for the max procedure
was an integer array of size n

— Number of test cases: 232xn

* Assume that the size of the input array is not
bounded

— Number of test cases: «

15



“éSSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Generating Test Cases Randomly

* |If we pick test cases randomly it is
unlikely that we will pick a case where
X and y have the same value

bool isEqual (int x, 1int vy)
{

1f (x = vy)

z := false; * If xandy can take 232 different values,
elje._ false. there are 2%4 possible test cases. In 232
return z; of them x and y are equal

} — probability of picking a case
e e _32
0.00000000023283064365386962890625 where x is equal to y is 2

 |tis notagood idea to pick the test
cases randomly (with uniform
distribution) in this case

* So, naive random testing is pretty
hopeless too
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Types of Testing

* Functional (Black box) vs. Structural (White box)
testing

— Functional testing: Generating test cases based on the
functionality of the software

— Structural testing: Generating test cases based on the
structure of the program
* Black box testing and white box testing are
synonyms for functional and structural testing,
respectively.

— In black box testing the internal structure of the program
is hidden from the testing process

— In white box testing internal structure of the program is
taken into account
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Criteria Based on Structures

Structures : Four ways to model software

1. Graphs Q\Q

2. L°g|ca| Expressmns (not X or not Y) and A and B

A: {0, 1, >1}
3. Input Domain B: {600, 700, 800}

Characterization C: {swe, cs, isa, infs}

4. Syntactic
Structures

18
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1. Graph Coverage — Structural

T
- 1 Path

(
CCover every path

Thi h t .
is graph may represen . 12567

* statements & branches ‘

" 1257

"+ 13567
* 1357
* 1343567
* 134357 ...

* methods & calls
e components & signals

e states and transitions
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1. Graph Coverage — Structural

* Coverage metrics

— Statement coverage: all statements in the programs
should be executed at least once

— Branch coverage: all branches in the program should be
executed at least once

— Path coverage: all execution paths in the program should
be executed at lest once
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Sl

Statement Coverage

areTheyPositive (int x, 1nt y)

{ Following test set will give us statement

if (x >= 0) coverage:
print (“x is positive”); T, ={(x=12,y=5), (x= -1,y=35),

else (x=115,y=-13),(x=-91,y= -2)}
print (“x is negative”);

if (y >= 0) There are smaller test cases which will
print (Yy is positive”); give us statement coverage too:

else T, ={(x=12,y=-5), (x= —1,y=35)}

print (“y 1s negative”);
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S«
Statement vs. Branch Coverage

assignAbsolute (int x)

{ Consider this program segment, the test set

if (x < 0) T = {x=—1} will give statement coverage,

X 1= ~X; however not branch coverage

Z = Xy

}
BO
Control Flow Graph: (x < 0)
/true false
B1 Test set {x=—1} does not
X 1= -X . execute this edge, hence, it

does not give branch coverage

B2
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Path Coverage

o , , (x >= 0)
areTheyPositive (1nt x, 1nt vy)

{ true false
if (x >= 0) B1

rint (“x 1s positive”); .
elsEe) ( B ) print (“x 1is p” prlnt(“x is n”)

print (“x 1s negative”);
if (y >= 0)
0)

print (Yy 1s positive”); ( .
else
print (“y is negative”); ‘/////?ue \\\&ﬂff
} B4 B5
Test set: print (Yy 1s p”) print (Yy 1s n”)
T2 = {(X=12’y= - 5)’ ( = -1 vy=35)}
gives both branch and statement
coverage but it does not give path coverage k‘ /
return

Set of all execution paths: {(B0,B1,B3,B4,86), (B0,B1,B3,B5,86), (B0,B2,B3,B4,B6),
(B0,B2,B3,B5,B6)}

Test set T, executes only paths: (B0,B1,B3,B5,B6) and (B0,B2,B3,B4,B6)
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Path Coverage

BO

C . . >=
areTheyPositive (int x, int vy) (x 0)

{ true false
if (x >= 0) B1

print (“x 1is positive”); |print (“x is p” prlnt(“x is n”)
else
print (*x 1s negative”); \\\\\\; B3 ‘//////
if (y >= 0)
print (“y is positive”); (y >= 0)
else | | true false
print (Yy 1s negative”); B4 B5
} print (Yy is p”) print (“y is n”)

Test set: \ /
T, = {(x=12,y=5), (x= -1,y=35), B6

(x=115,y=-13),(x=-91,y= -2)} return
gives both branch, statement and path
coverage
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Condition Coverage

T ={(x=—1, y=1), (x=1, y=1)} will achieve

something (int x) statement, branch and path coverage,
{ however T will not achieve condition
if (x <0 |] vy < x) coverage because the boolean term (y <
{ x) never evaluates to true. This test set
v i= -y satisfies part (1) but does not satisfy part (2).
X 1= -X; BO
} T={(x=-1, y=1), (x=1, y=0)}
2 i— % (x <0 |l vy < x) will not achieve condition
coverage either. This test set
} / ue false satisfies part (2) but does not satisfy
B1 part (1). It does not achieve branch
y 1= —-Vy; coverage since both test cases take
X 1= —-X; the true branch, and, hence, it does

not achieve condition coverage by
definition.
Control Flow Graph B2

. T ={(x=-1, y==2), {(x=1, y=1)}
4 = X achieves condition coverage.
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Testing Overview

 Who tests
— Programmers

— Testers/Req. Analyst

— Users - How (test cases designed)
e What is tested _ Intuition
— Unit Code testing — Specification based (black
— Functional Code testing box)
— Integration/system — Code based (white-box)
testing

— User interface testing
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Unit testing

Objectives

To test the function of a program or unit of code
such as a program or module

To test internal logic

To verify internal design

To test path & conditions coverage

To test exception conditions & error handling

When

After modules are coded

Input

Internal Application Design
Master Test Plan
Unit Test Plan

Output

Unit Test Report
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Who eDeveloper

Methods e White Box testing techniques
oTest Coverage techniques

Tools eDebug

eRe-structure

«Code Analyzers
ePath/statement coverage tools

Education |eTesting Methodology
eEffective use of tools
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Integration testing

Objectives |« To technically verify proper
interfacing between modules, and
within sub-systems

When o After modules are unit tested
Input o Internal & External Application
Design

e Master Test Plan
o Integration Test Plan

Output o Integration Test report
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Ss
Who eDevelopers
Methods eWhite and Black Box
techniques
eProblem / Configuration
Management
Tools eDebug
eRe-structure
«Code Analyzers
Education oTesting Methodology
eEffective use of tools
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System Testing

Objectives o To verify that the system components perform control
functions

e To perform inter-system test

o To demonstrate that the system performs both
functionally and operationally as specified

o To perform appropriate types of tests relating to
Transaction Flow, Installation, Reliability, Regression

etc.
When o After Integration Testing
Input o Detailed Requirements & External Application Design

e Master Test Plan
e System Test Plan

Output o System Test Report
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Who eDevelopment Team and Users
Methods eProblem / Configuration Management
Tools eRecommended set of tools
Education oTesting Methodology
eEffective use of tools




MISSOURI

S T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Four Fundamental Challenges to Competent
Testing

 Complete testing is impossible

* Testers misallocate resources because they fall
for the company’s process myths

* Test groups operate under multiple missions,
often conflicting, rarely articulated

* Test groups often lack skilled programmers,
and a vision of appropriate projects that
would keep programming testers challenged
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Testing Pitfalls

OUR GOAL TS5 TO WRITE
BUGFREE SOFTWARE .
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FIX.

1 HOPE T'M GONNA
THLS WRITE ME A
DRIVES NEW MINIVAN
THE RIGHT  THIS AFTER-
BEHAVIOR.  NOON!
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Software Testing




