M1 — |
SSE-TURI MissoURl UNIVERSITY OF SCIENCE AND TECHNOLOGY

You know ...

e ... Software requirements
* ... Software design
* ... Software coding

MISSOURI o :
S&r{\ MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

DILBERT by Scott Adams
YOUR USER REQUIRE- CO YOU REALIZE THAT
MENTS INCLUDE FOUR I NO HUMAN WOULD BE $8°§E$T°§;‘1'oo
HUNDRED FEATURES. ABLE TO USE A PRODUCT EASY TO USE"
WITH THAT LEVEL OF TO THE LIST.

WWW. dilbert.com scottadems®acl com

COMPLEXITY?

ﬁn'u © 2001 United Festure Syndicate, Inc.

\

MISSOURI

Sl

MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Software Testing

MISSOURI

S &T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

e Software Testing?
* Why Test?
* What Do We Do When We Test ?

— Understand basic techniques for software
verification and validation

— Analyze basics of software testing techniques

MSISSOTURI MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

The Term Bug

- Bugis used informally

++CDatabase: :_stats.mem_used_u

_pbarams.max_unrelevance = {int

D t o Fallure if (_params.max_unrelevance <

) 'f _params.max_unrelevance =
EE EE(: _barams.min_gumcTause_lits_fo

if (_params.yi

clause_lit

. Faul Inconsistency gl
+ Problem * Product Anomaly sl TF"En
e Error * Product Incidence mté% HEtIELI«EES
e |Incident * Feature |

* Anomaly

e \ariance

MSISSOTURI MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Some “Bug detection” Techniques

T N Catch me if
TN AR\ —_Youcan!
- A - k 2 - —
\ \ =% e 17> 27

=T 7/ S

 Formal methods :proving software correct

e Testing: executing program in a controlled
environment (input) and “validating” output
(IEEE definition).

:> Why Test?

MISSOURI

S T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Northeast Blackout of 2003

508 generating
units and 256
power plants shut
_ down J

-~

e N
Affected 10 million
people in Ontario,

\ Canada)
s N
Affected 40 million
people in 8 US
N states)

~

Financial losses of
$6 Billion USD

J

N O

The alarm system in the energy management system failed due
to a software error and operators were not informed of the power
N overload in the system

MSISSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Costly Software Failures !

« NIST report, “The Economic Impacts of Inadequate
Infrastructure for Software Testing” (2002)

> Inadequate software testing costs the US alone between
$22 and $59 billion annually

« Huge losses due to web application failures
» Financial services : $6.5 million per hour (just in USA!)

» Credit card sales applications : $2.4 million per hour (in
USA)

MSISSOTURI Missourt UNIVERSITY OF SCIENCE AND TECHNOLOGY

Discussion ...

 Have you heard of other software bugs?
— In the media?
— From personal experience?

* Does this embarrass you as a future software
engineer?

MSISSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Cost of Not Testing

Poor Program Managers might say:

"Testing is too expensive.”

* Testing is the most time consuming and
expensive part of software development

* Not testing is even more expensive

* If we do not have enough testing effort early,
the cost of testing increases

11

MISSOURI

S T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Cost of Not Testing

11
WE CAN ONLY IF WE DONT FIX | I
AFFORD TO FIX THE 100% OF THE BUGS, S0 OUR
HIGH-PRIORITY THE SOFTWARE WILL PLAN IS
BUGS. BE 100% USELESS. TO FAIL?
MORE
SLOLJLY.

www.dilbert.com scottadams®acl.com

E A

b 2209 02009 Scott Adams, Inc./Dist. by UFS, Inc.

MSISSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Testing Goals

* The Major Objectives of Software Testing:
- Detect errors (or bugs) as much as possible in a given
timeline.

- Demonstrate a given software product matching its
requirement specifications.

- Validate the quality of a software testing using the
minimum cost and efforts.

* Testing can NOT prove product works 100%- -
- even though we use testing to demonstrate
that parts of the software works

12

MSISSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Testing Overview

 Who tests
— Programmers

— Testers/Req. Analyst

— Users - How (test cases designed)
e What is tested _ Intuition
— Unit Code testing — Specification based (black
— Functional Code testing box)
— Integration/system — Code based (white-box)
testing

— User interface testing

MISSOURI

Sl

MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Software Testing

MISSOURI

S T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Exhaustive Testing is Hard

* Number of possible test cases
(assuming 32 bit integers)

int max(int x, int vy) _ 232y 32— 964
{ :
if (x> y) * Do bigger test sets help?
return x; — Test set {(x=3,y=2), (x=2,y=3)}
else .
will detect the error

return Xx;
} — Test set
{(x=3,y=2),(x=4,y=3),(x=5,y=1)} will
18446744073709551616 possibilites ~ NOt detect the error although it has
more test cases

* |tis not the number of test cases

 But,if T,oT,, then T, will detect every
fault detected by T,

“éSSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Exhaustive Testing is Hard

* Assume that the input for the max procedure
was an integer array of size n

— Number of test cases: 232xn

* Assume that the size of the input array is not
bounded

— Number of test cases: «

15

“éSSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Generating Test Cases Randomly

* |If we pick test cases randomly it is
unlikely that we will pick a case where
X and y have the same value

bool isEqual (int x, 1int vy)
{

1f (x = vy)

z := false; * If xandy can take 232 different values,
elje._ false. there are 2%4 possible test cases. In 232
return z; of them x and y are equal

} — probability of picking a case
e e _32
0.00000000023283064365386962890625 where x is equal to y is 2

 |tis notagood idea to pick the test
cases randomly (with uniform
distribution) in this case

* So, naive random testing is pretty
hopeless too

MISSOURI

S T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Types of Testing

* Functional (Black box) vs. Structural (White box)
testing

— Functional testing: Generating test cases based on the
functionality of the software

— Structural testing: Generating test cases based on the
structure of the program
* Black box testing and white box testing are
synonyms for functional and structural testing,
respectively.

— In black box testing the internal structure of the program
is hidden from the testing process

— In white box testing internal structure of the program is
taken into account

MSISSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Criteria Based on Structures

Structures : Four ways to model software

1. Graphs Q\Q

2. L°g|ca| Expressmns (not X or not Y) and A and B

A: {0, 1, >1}
3. Input Domain B: {600, 700, 800}

Characterization C: {swe, cs, isa, infs}

4. Syntactic
Structures

18

MISSOURI

S T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

1. Graph Coverage — Structural

T
- 1 Path

(
CCover every path

Thi h t .
is graph may represen . 12567

* statements & branches ‘

" 1257

"+ 13567
* 1357
* 1343567
* 134357 ...

* methods & calls
e components & signals

e states and transitions

“éSSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

1. Graph Coverage — Structural

* Coverage metrics

— Statement coverage: all statements in the programs
should be executed at least once

— Branch coverage: all branches in the program should be
executed at least once

— Path coverage: all execution paths in the program should
be executed at lest once

MISSOURI MissoURl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Sl

Statement Coverage

areTheyPositive (int x, 1nt y)

{ Following test set will give us statement

if (x >= 0) coverage:
print (“x is positive”); T, ={(x=12,y=5), (x= -1,y=35),

else (x=115,y=-13),(x=-91,y= -2)}
print (“x is negative”);

if (y >= 0) There are smaller test cases which will
print (Yy is positive”); give us statement coverage too:

else T, ={(x=12,y=-5), (x= —1,y=35)}

print (“y 1s negative”);

MISSOURI MissoURl UNIVERSITY OF SCIENCE AND TECHNOLOGY

S«
Statement vs. Branch Coverage

assignAbsolute (int x)

{ Consider this program segment, the test set

if (x < 0) T = {x=—1} will give statement coverage,

X 1= ~X; however not branch coverage

Z = Xy

}
BO
Control Flow Graph: (x < 0)
/true false
B1 Test set {x=—1} does not
X 1= -X . execute this edge, hence, it

does not give branch coverage

B2

MISSOURI

S &T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Path Coverage

o , , (x >= 0)
areTheyPositive (1nt x, 1nt vy)

{ true false
if (x >= 0) B1

rint (“x 1s positive”); .
elsEe) (B) print (“x 1is p” prlnt(“x is n”)

print (“x 1s negative”);
if (y >= 0)
0)

print (Yy 1s positive”); (.
else
print (“y is negative”); ‘/////?ue \\\&ﬂff
} B4 B5
Test set: print (Yy 1s p”) print (Yy 1s n”)
T2 = {(X=12’y= - 5)’ (= -1 vy=35)}
gives both branch and statement
coverage but it does not give path coverage k‘ /
return

Set of all execution paths: {(B0,B1,B3,B4,86), (B0,B1,B3,B5,86), (B0,B2,B3,B4,B6),
(B0,B2,B3,B5,B6)}

Test set T, executes only paths: (B0,B1,B3,B5,B6) and (B0,B2,B3,B4,B6)

N§50TURI MissoURl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Path Coverage

BO

C . . >=
areTheyPositive (int x, int vy) (x 0)

{ true false
if (x >= 0) B1

print (“x 1is positive”); |print (“x is p” prlnt(“x is n”)
else
print (*x 1s negative”); \\\\\\; B3 ‘//////
if (y >= 0)
print (“y is positive”); (y >= 0)
else | | true false
print (Yy 1s negative”); B4 B5
} print (Yy is p”) print (“y is n”)

Test set: \ /
T, = {(x=12,y=5), (x= -1,y=35), B6

(x=115,y=-13),(x=-91,y= -2)} return
gives both branch, statement and path
coverage

MSISSOTURI MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Condition Coverage

T ={(x=—1, y=1), (x=1, y=1)} will achieve

something (int x) statement, branch and path coverage,
{ however T will not achieve condition
if (x <0 |] vy < x) coverage because the boolean term (y <
{ x) never evaluates to true. This test set
v i= -y satisfies part (1) but does not satisfy part (2).
X 1= -X; BO
} T={(x=-1, y=1), (x=1, y=0)}
2 i— % (x <0 |l vy < x) will not achieve condition
coverage either. This test set
} / ue false satisfies part (2) but does not satisfy
B1 part (1). It does not achieve branch
y 1= —-Vy; coverage since both test cases take
X 1= —-X; the true branch, and, hence, it does

not achieve condition coverage by
definition.
Control Flow Graph B2

. T ={(x=-1, y==2), {(x=1, y=1)}
4 = X achieves condition coverage.

MSISSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Testing Overview

 Who tests
— Programmers

— Testers/Req. Analyst

— Users - How (test cases designed)
e What is tested _ Intuition
— Unit Code testing — Specification based (black
— Functional Code testing box)
— Integration/system — Code based (white-box)
testing

— User interface testing

MISSOURI

Sl

MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Unit testing

Objectives

To test the function of a program or unit of code
such as a program or module

To test internal logic

To verify internal design

To test path & conditions coverage

To test exception conditions & error handling

When

After modules are coded

Input

Internal Application Design
Master Test Plan
Unit Test Plan

Output

Unit Test Report

MSISSOTURI MissouRl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Who eDeveloper

Methods e White Box testing techniques
oTest Coverage techniques

Tools eDebug

eRe-structure

«Code Analyzers
ePath/statement coverage tools

Education |eTesting Methodology
eEffective use of tools

MSISSOTURI Missourt UNIVERSITY OF SCIENCE AND TECHNOLOGY

Integration testing

Objectives |« To technically verify proper
interfacing between modules, and
within sub-systems

When o After modules are unit tested
Input o Internal & External Application
Design

e Master Test Plan
o Integration Test Plan

Output o Integration Test report

MISSOURI

MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY
Ss
Who eDevelopers
Methods eWhite and Black Box
techniques
eProblem / Configuration
Management
Tools eDebug
eRe-structure
«Code Analyzers
Education oTesting Methodology
eEffective use of tools

MISSOURI

S T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

System Testing

Objectives o To verify that the system components perform control
functions

e To perform inter-system test

o To demonstrate that the system performs both
functionally and operationally as specified

o To perform appropriate types of tests relating to
Transaction Flow, Installation, Reliability, Regression

etc.
When o After Integration Testing
Input o Detailed Requirements & External Application Design

e Master Test Plan
e System Test Plan

Output o System Test Report

MISSOURI

MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY
Ss
Who eDevelopment Team and Users
Methods eProblem / Configuration Management
Tools eRecommended set of tools
Education oTesting Methodology
eEffective use of tools

MISSOURI

S T MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Four Fundamental Challenges to Competent
Testing

 Complete testing is impossible

* Testers misallocate resources because they fall
for the company’s process myths

* Test groups operate under multiple missions,
often conflicting, rarely articulated

* Test groups often lack skilled programmers,
and a vision of appropriate projects that
would keep programming testers challenged

MISSOURI

Sl

MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Testing Pitfalls

OUR GOAL TS5 TO WRITE
BUGFREE SOFTWARE .
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FIX.

1 HOPE T'M GONNA
THLS WRITE ME A
DRIVES NEW MINIVAN
THE RIGHT THIS AFTER-
BEHAVIOR. NOON!

\ - \

S Adams E-mall: SCOTTADAMS#®AOL.COM

(,'/.'_} @ 1995 United Feature Syndicate, Inc.(NYC)

MISSOURI

Sl

MissOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Software Testing

